Abstract

Lidar is an active remote sensing instrument, which has the characteristics of high precision and high spatial-temporal resolution. It has been widely used in the detection of atmospheric environmental parameters (aerosol, CO2, ozone, etc.) and meteorological parameters (temperature, water vapor, pressure, wind speed and direction, etc.). In recent years, atmospheric phenomena such as haze and climate change have been widely concerned by the public, and the national environmental governance and meteorological forecasting departments have an urgent demand for atmospheric observation technology. Atmospheric Lidar has been developed rapidly in China, and has achieved good research achievements. The research progress and development status of Lidar for atmospheric detection in recent years were introduced and summarized in this paper. According to the different detection objects detected by Lidars, Lidars can be classified as Mie scattering Lidar, Raman Lidar, high-spectral-resolution Lidar, differential absorption Lidar and et al. The advantages and disadvantages of all kinds of atmospheric detection Lidars and their applications in different detection objects were comprehensively introduced in this paper. Finally, the bottlenecks of Lidar technology were summarized, and the development trend of Lidar was also prospected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.