Abstract

Tocotrienol, a member of the vitamin E family of compounds, is currently receiving increased attention owing to its highly promising anticancer effects. However, its potential in cancer therapy is limited by its poor bioavailability and its inability to specifically reach tumors at therapeutic concentrations after intravenous administration. In order to address these problems, various delivery strategies have been proposed, such as the inclusion of tocotrienol in gamma-cyclodextrins, prodrugs and emulsions, and entrapment in lipid nanoparticles and vesicles. Among these approaches, we have demonstrated that the entrapment of tocotrienol within vesicles bearing transferrin, whose receptors are overexpressed on numerous cancer cells, significantly improved the uptake by cancer cells overexpressing transferrin receptors. Consequently, the intravenous administration of tocotrienol entrapped in transferrin-bearing vesicles led to tumor regression and even complete tumor suppression in some cases in a murine tumor model, as well as improvement of animal survival. Transferrin-bearing vesicles are therefore highly promising for the delivery of tocotrienol to cancer cells in vitro and in vivo, and should be further investigated to optimize the anticancer therapeutic effect of tocotrienol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.