Abstract

High-pressure die casting (HPDC) has been extensively used to manufacture aluminum alloy heat dissipation components in the fields of vehicles, electronics, and communication. With the increasing demand for HPDC heat dissipation components, the thermal conductivity of die-cast aluminum alloys is paid more attention. In this paper, a comprehensive review of the research progress on the thermal conductivity of HPDC aluminum alloys is provided. First of all, we introduce the general heat transport mechanism in aluminum alloys, including electrical transport and phonon transport. Secondly, we summarize several common die-cast aluminum alloy systems utilized for heat dissipation components, such as an Al–Si alloy system and silicon-free aluminum alloy systems, along with the corresponding composition optimizations for these alloy systems. Thirdly, the effect of processing parameters, which are significant for the HPDC process, on the thermal conductivity of HPDC aluminum alloys is discussed. Moreover, some heat treatment strategies for enhancing the thermal conductivity of die-cast aluminum alloys are briefly discussed. Apart from experimental findings, a range of theoretical models used to calculate the thermal conductivity of die-cast aluminum alloys are also summarized. This review aims to guide the development of new high-thermal-conductivity die-cast aluminum alloys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.