Abstract
Synthetic biology, a newly and rapidly developing interdisciplinary field, has demonstrated increasing potential for extensive applications in the wide areas of biomedicine, biofuels, and novel materials. DNA assembly is a key enabling technology of synthetic biology and a central point for realizing fully synthetic artificial life. While the assembly of small DNA fragments has been successfully commercialized, the assembly of large DNA fragments remains a challenge due to their high molecular weight and susceptibility to breakage. This article provides an overview of the development and current state of DNA assembly technology, with a focus on recent advancements in the assembly of large DNA fragments in Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. In particular, the methods and challenges associated with the assembly of large DNA fragment in different hosts are highlighted. The advancements in DNA assembly have the potential to facilitate the construction of customized genomes, giving us the ability to modify cellular functions and even create artificial life. It is also contributing to our ability to understand, predict, and manipulate living organisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.