Abstract
BackgroundRuminal methane (CH4) emissions from ruminants not only pollute the environment and exacerbate the greenhouse effect, but also cause animal energy losses and low production efficiency. Consequently, it is necessary to find ways of reducing methane emissions in ruminants. Studies have reported that feed additives such as nitrogen-containing compounds, probiotics, prebiotics, and plant extracts significantly reduce ruminant methane; however, systematic reviews of such studies are lacking. The present article summarizes research over the past five years on the effects of nitrogen-containing compounds, probiotics, probiotics, and plant extracts on methane emissions in ruminants. The paper could provide theoretical support and guide future research in animal production and global warming mitigation.MethodsThis review uses the Web of Science database to search keywords related to ruminants and methane reduction in the past five years, and uses Sci-Hub, PubMed, etc. as auxiliary searchers. Read, filter, list, and summarize all the retrieved documents, and finally complete this article.ResultsMost of the extracts can not only significantly reduce CH4 greenhouse gas emissions, but they will not cause negative effects on animal and human health either. Therefore, this article reviews the mechanisms of CH4 production in ruminants and the application and effects of N-containing compounds, probiotics, prebiotics, and plant extracts on CH4 emission reduction in ruminants based on published studies over the past 5 years.ConclusionOur review provides a theoretical basis for future research and the application of feed additives in ruminant CH4 emission reduction activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.