Abstract

As drug carriers for cancer treatment, stimulus-responsive polymer nanomaterials are a major research focus. These nanocarriers respond to specific stimulus signals (e.g., pH, redox, hypoxia, enzymes, temperature, and light) to precisely control drug release, thereby improving drug uptake rates in cancer cells and reducing drug damage to normal cells. Therefore, we reviewed the research progress in the past 6 years and the mechanisms underpinning single and multiple stimulus-responsive polymer nanocarriers in tumour therapy. The advantages and disadvantages of various stimulus-responsive polymeric nanomaterials are summarised, and the future outlook is provided to provide a scientific and theoretical rationale for further research, development, and utilisation of stimulus-responsive nanocarriers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.