Abstract

The deepwater drilling riser is a very important and vulnerable connection between an offshore platform and subsea wellhead. Under some certain complex marine environment and operating conditions, the offshore platform may drift beyond the safe limitations or be driven away rapidly. In order to protect the safety of the platform, personnel and equipment, it is necessary to implement the emergency disconnection of the drilling riser. Since the riser is stretched under a normal connection, the riser will perform a recoil response under the combined effect of elastic potential energy and drilling fluid (mud) discharge frictional resistance after the emergency disconnection. There are complex mechanical mechanisms, influencing factors and difficult safety control problems in the recoil control process. Therefore, effectively controlling the recoil response of the deepwater drilling riser after emergency release has become one of the technical difficulties faced by deepwater drilling. The drilling mud discharge frictional resistance and tensioning force are important factors affecting the recoil response. It is necessary to develop a more general dynamic recoil model for the riser that considers the actual conditions of drilling mud discharge, floating platform motion and nonlinear tensioner factors. This paper introduces the research progress on the recoil analysis and control technology of the deepwater drilling riser, including the discharge, mechanical analysis model, the top tensioner system and control method of the recoil response, which provides a reference for future research on recoil response analyses and design of deepwater drilling risers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call