Abstract

Abstract: In various specific application domains, electro-hydraulic servo systems are widely adopted due to their high power-to-volume ratio, superior dynamic response performance, and extremely high control accuracy. However, the inevitable presence of nonlinear factors in the system poses a series of challenges for precise mathematical modeling and the design and application of different forms of control strategies. This article aims to explore how various control strategies are specifically implemented to address the nonlinear characteristics of electro-hydraulic servo systems, building upon the research progress in modeling these systems considering nonlinear factors. Subsequently, the article summarizes their innovative applications in electro-hydraulic servo systems. Simultaneously, relevant patents and technologies were reviewed and summarized. The paper provides a detailed comparison and analysis of various nonlinear modeling methods, with a particular focus on the significance of neural networks and fuzzy logic control in enhancing the performance of electro-hydraulic servo systems. The article reveals significant advancements in modern control strategies in dealing with uncertainties and disturbances within the system, offering new perspectives and ideas for improving system efficiency and achieving energy resource conservation with technological progress. The review provides a series of practical recommendations aimed at optimizing the performance of electro-hydraulic servo systems. Despite progress in multiple research endeavors, future research should focus on further enhancing system performance and applying these strategies to a broader range of scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call