Abstract

Abstract Poor crack resistance, high brittleness, and poor toughness are inherent limitations of traditional cement-based materials. Besides, cement-based materials have certain shortcomings in energy consumption and environmental protection. Therefore, improving the performance of cement-based materials becomes a hot topic in related research. At the same time, the development of nanomaterials and technologies provides researchers with a new research idea: to enhance the performance of cement-based materials at the nanoscale level. Graphene oxide (GO) is one of the most representative nano-reinforcements. Due to its high surface area and excellent physical properties, GO has a surprising effect on improving the performance of cement-based materials. In addition, nanosilica (NS) and carbon nanotubes (CNTs) have excellent improvement on cement-based materials, and people also hope to further improve the performance of cement-based materials through the interaction of various nanomaterials. In this paper, the influence of GO on cement-based materials is reviewed by consulting a lot of correlative literature, mainly focusing on the following aspects: (i) The dispersion of GO in cement paste. (ii) The influence of GO on the properties of cement-based materials, including working performance, mechanical strength, microstructural characteristics, and durability. (iii) The effect of nanohybrid materials of GO, NS, and CNTs on cement-based materials, and the synergistic effects of various nanomaterials are reviewed for the first time. (iv) Evaluation of current progress. This paper aims to provide guidance for the study and application of GO-modified cement-based materials and nanohybrid materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.