Abstract

<sec>Nanobeam is an advanced technology for preparing charged ion beams with spot diameters on a nanometer scale, and mainly used for high-resolution and high-precision ion beam analysis, ion beam fabrication and ion beam material modification research. The nanobeam devices play an important role in realizing material analysis, micro/nano fabrication, microelectronic device manufacturing and quantum computing. The high-quality ion source is one of the key components of nanobeam device, the performance of which directly affects the resolution and precision of the nanobeam system. However, the traditional ion source used in this system is limited to available ionic species, large energy spread and complex structure. These issues hinder their ability to meet emerging application scenarios that require multi-ion types and high resolution. This emphasizes the importance of creating newion sources as soon as possible.</sec><sec>With the development of laser cooling technology, ultracold ions with temperatures in the range of mK or even μK can be obtained based on photoionization of cold atoms and laser cooling of ions. The typical characteristics of low temperature and easy operation greatly promote the emergence of ultracold ion sources. The ultracold ions exhibit extremely small transverse velocity divergence, which can significantly enhance the brightness and emittance quality parameters of the ion source, bringing great opportunities for innovating nano-ion beam technology. Therefore, the research on ultracold ion sources is of great significance for achieving high-quality ion sources with higher brightness, smaller size, lower energy dispersion, more diverse ion species, and simplified structure. Here, we introduce the important achievements in basic research and application technology development of magneto-optical trap ion sources, cold atomic beam ion sources, and ultracold single ion sources from the aspects of preparation principles, generation methods, and typical applications, and review the recent research progress of ultracold ion sources. Finally, we provide an outlook on the future development and application prospects of ultracold ion sources.</sec>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.