Abstract

Supercapacitors have attracted extensive research attention in the fields of materials science, new devices, and new energy due to their better temperature characteristics, rapid charge-discharge rates, environmental friendliness, and ultra-long cycle life. NiFe2O4, as a pseudocapacitive electrode material with a spinel structure, has shown enormous potential as an electrode material for supercapacitors due to its low cost, high abundance, and better electrochemical performance. This paper systematically reviews various preparation methods of NiFe2O4 electrode materials, including but not limited to hydrothermal method, solvothermal method, electrospinning technique, sol-gel method, chemical bath deposition (CBD), co-precipitation method, and continuous ion layer adsorption reaction. Strategies for carbon material modification of NiFe2O4 electrodes using graphene and its derivatives, carbon nanotubes, porous carbon, and activated carbon are thoroughly discussed. Furthermore, the paper elaborates on structural regulation methods of NiFe2O4 and its composite materials, comprehensively analyzing different structural design strategies such as heterojunction structure, core-shell structure, hollow structure, dendritic structure, and layered structure, and their effects on material performance. In particular, a detailed analysis of the pore size distribution and specific surface area (SSA) characteristics of porous materials is conducted, and the specific impact mechanisms of pore size and SSA on electrochemical performance are summarized. The paper also focuses on the latest research progress in preparing asymmetric supercapacitors (ASCs) using NiFe2O4 electrode materials and comprehensively discusses the challenges faced by NiFe2O4 electrode materials and possible future development directions. Through this series of comprehensive analyses, the aim is to provide a solid theoretical foundation and practical guidance for the application of NiFe2O4 electrode materials in the field of supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.