Abstract
Traditional Chinese medicine (TCM) has been used for thousands of years in China, characterizing with novel pharmacological mechanisms, low toxicity, and limited side effects. However, the application of TCM active ingredients is often hindered by their physical and chemical properties, including poor solubility, low bioavailability, short half-life, toxic side effects within therapeutic doses, and instability in biological environments. Consequently, an increasing number of researchers are directing their attention towards the discovery of nano-delivery systems for TCM to overcome these clinical challenges. This review aims to provide the latest knowledge and results concerning the studies on the nano-delivery systems for the active ingredients from TCM. Recent literature relating to nano-delivery systems for the active ingredients from TCM is summarized to provide a fundamental understanding of how such systems can enhance the application of phytochemicals. The nano-delivery systems of six types of TCM monomers are summarized and categorized based on the skeletal structure of the natural compounds. These categories include terpenoids, flavonoids, alkaloids, quinones, polyphenols, and polysaccharides. The paper analyzes the characteristics, types, materials used, and the efficacy achieved by TCM-nano systems. Additionally, the advantages and disadvantages of nano-drug delivery systems for TCM are summarized in this paper. Nano-delivery systems represent a promising approach to overcoming clinical obstacles stemming from the physical and chemical properties of TCM active ingredients, thereby enhancing their clinical efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.