Abstract

The effect of microplastics on soil ecosystem is a hot topic in recent years. It is increasingly recognized that soil is also an important sink for microplastics in addition to the aquatic environment. This review aims to discuss the direct and indirect effects of microplastics on the soil-plant system, focusing on the effects of microplastics on soil aggregates and soil nutrient cycling as well as the combined effects of microplastics and other pollutants on soil-plant systems. Microplastics have been shown to affect the rooting ability of plants by altering soil bulk density and water-holding capacity, as well as reducing photosynthetic rate by directly interfering with the balance of plant chlorophyll a/chlorophyll b ratios. In addition, microplastics affect the stability of aggregates by interfering with abiotic factors (e.g., sesquioxide and exchangeable cations) or biotic factors (e.g., soil organic matter and organism activities in the soil). Moreover, microplastics may affect soil nutrient cycling by altering the dominant bacteria phyla in the soil or genes and enzymes associated with the carbon, nitrogen, and phosphorus cycle. When microplastics and other pollutants have combined effects on plants, microplastics attached onto the root surface physically hamper the contact of the pollutants with the roots but are more likely to exacerbate the damage of pollutants to plants. Different types, sizes and concentrations of microplastics have different effects on the soil-plant system. Microplastics with similar shape and size to soil particles have less significant effects, while microfibers, small-sized microplastics and biodegradable plastic particles have more significant effects. Finally, this review also provides an outlook for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.