Abstract

The low-cost, high-efficiency and easy fabrication of perovskite solar cells make them an ideal candidate for replacing industrialized silicon solar cells, and thus reforming the current energy supply structure. However, the industrialization of perovskite solar cells is now restricted due to its poor stability. In this article, the intrinsic ion migration behavior in the perovskite film under light irradiation is introduced, which is mainly responsible for hysteresis, fluorescence quenching/enhancement and the failure of solar cell. In addition, the typical ultraviolet light instability of TiO<sub>2</sub>/perovskite interface, and the light instability of hole transport layer and metal electrodes are also discussed subsequently. As a light-dependent device, improving its light radiation stability is essential for making it suitable to various environmental applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.