Abstract

BackgroundRetinal diseases can lead to severe visual impairment and even blindness, but current treatments are limited. For precise targeted therapy, the pathophysiological mechanisms of the diseases still need to be further explored. Iron serves an essential role in many biological activities and helps maintain the function and morphology of the retina. The vision problems caused by retinal diseases are affecting more and more people, the study of iron metabolism in retinal diseases possesses great potential for clinical application. Main textIron maintains a dynamic balance in the retina but in excess is toxic to the retina. Iron overload can lead to various pathological changes in the retina through oxidative stress, inflammation, cell death, angiogenesis and other pathways. It is therefore involved in the progression of retinal diseases such as age-related macular degeneration, glaucoma, diabetic retinopathy, retinitis pigmentosa, and hereditary iron overload. In recent years, iron chelators have been shown to be effective in the treatment of retinal diseases, but the exact mechanism is not yet fully understood. This question prompted further investigation into the specific mechanisms by which iron metabolism is involved in retinal disease. ConclusionsThis review summarizes iron metabolism processes in the retina and mechanistic studies of iron metabolism in the progression of retinal disease. It also highlights the therapeutic potential of iron chelators in retinal diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call