Abstract

Ion irradiation, a technology in which ion beams are used to irradiate materials, has high manipulation precision, short processing time, and many applications in the fields of material modification, chip manufacturing, biomedicine, energy and chemicals. Especially in magnetic material modification, customized modifications of magnetic materials can be achieved by precisely controlling the energy, dose, and direction of the ion beam. To further enhance the performances of magnetic materials and explore new magnetic devices, this study focuses on how ion irradiation precisely modulates various magnetic interactions and the analysis of its influence on the spin Hall effect and magnetic structural dynamics. Firstly, the latest research achievements are emphasized of ion irradiation regulated magnetic characteristics such as perpendicular magnetic anisotropy, exchange bias, and RKKY interaction. These regulation methods are crucial for understanding and optimizing the microstructure and properties of magnetic materials. Secondly, the significant role played by ion irradiation in regulating spin-orbit torque devices is discussed in detail. These applications demonstrate the potential of ion irradiation technology in designing high-performance magnetic storage and processing devices. Finally, the future applications of ion irradiation technology in the preparation of multifunctional magnetic sensors and magnetic media for information storage are discussed, highlighting its great enormous innovation and application potential in the field of magnetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call