Abstract
Intensive efforts have been conducted to realize the reliable interfacial joining of thermoelectric materials and electrode materials with low interfacial contact resistance, which is an essential step to make thermoelectric materials into thermoelectric devices for industrial application. In this review, the roles of structural integrity, interdiffusion, and contact resistance in long-term reliabilities of thermoelectric modules are outlined first. Then interfacial reactions of near-room-temperature Bi2Te3-based thermoelectric materials and various electrode materials are reviewed comprehensively. We also summarized the joining behavior of the mid-temperature PbTe-based thermoelectric materials and commonly used electrode materials. Subsequently, for other thermoelectric materials systems, i.e., SiGe, CoSb3, and Mg3Sb2, previous attempts to join with some electrode materials are also recapitulated. Finally, some future prospects to further improve the joint reliability in thermoelectric device manufacturing are proposed. We believe that this review will provide guidance for preparing thermoelectric devices and optimizing thermoelectric device design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.