Abstract

Capacitive deionization is an energy-efficient and environment-friendly desalination method, which forces ionic species toward oppositely charged high-surface-area electrodes under an electric field to achieve the purpose of desalination. The key technology is to prepare electrode materials, which require high specific surface area, reasonable pore size distribution and excellent electrical conductivity. Graphene is a desired kind of electrode material used in ca- pacitive deionization for its high specific surface area and wonderful conductivity. However, the actual specific surface area is far below the theoretical value due to the effect of aggregation of graphene. The three-dimensional graphene or the composite materials can overcome aggregation effect to improve the performance of electrode. The research pro- gress of the capacitive deionization technology based on graphene and its composite electrode are reviewed in detail. The existing problems and application prospect are also objectively pointed out in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.