Abstract

In high-speed motors, there is a huge amount of heat generation from core and winding losses, which may result in thermal failures or motor performance deterioration. In the prevention of heat accumulation, efficient cooling technology is critical for smooth and reliable motor movement. This paper summarizes the diverse application of high-speed motor and thermal requirements, such as in electrical devices, turbo-machinery, and high-precision machine tools. Three paths of case convection—cooling, internal ventilation cooling and spindle core cooling—are analyzed. Methods for configuring thermal resistance and improving cooling efficiency are summarized. Among them, coolant flow characteristics and flow channel shapes, gas supply ventilation systems, and methods to reduce air resistance, as well as axial cooling and integrated heat pipe structures, are extensively investigated. Finally, the development prospects of high-speed motor cooling are also forecasted. At present, the primary research directions are to reduce the heat generated by the heat source, utilize the latent heat of the coolant, optimize the cooling flow path of the shell, design an axial air-cooling circulation system, and enhance the heat dissipation of the spindle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call