Abstract
The advent of atomic force microscopy (AFM) provides a powerful tool for investigating the behaviors of single living cells under near physiological conditions. Besides acquiring the images of cellular ultra-microstructures with nanometer resolution, the most remarkable advances are achieved on the use of AFM indenting technique to quantify the mechanical properties of single living cells. By indenting single living cells with AFM tip, we can obtain the mechanical properties of cells and monitor their dynamic changes during the biological processes (e.g., after the stimulation of drugs). AFM indentation-based mechanical analysis of single cells provides a novel approach to characterize the behaviors of cells from the perspective of biomechanics, considerably complementing the traditional biological experimental methods. Now, AFM indentation technique has been widely used in the life sciences, yielding a large amount of novel information that is meaningful to our understanding of the underlying mechanisms that govern the cellular biological functions. Here, based on the authors' own researches on AFM measurement of cellular mechanical properties, the principle and method of AFM indentation technique was presented, the recent progress of measuring the cellular mechanical properties using AFM was summarized, and the challenges of AFM single-cell nanomechanical analysis were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.