Abstract

The conversion and utilization of carbon dioxide (CO2) have dual significance for reducing carbon emissions and solving energy demand. Catalytic reduction of CO2 is a promising way to convert and utilize CO2. However, high-performance catalysts with excellent catalytic activity, selectivity and stability are currently lacking. High-throughput methods offer an effective way to screen high-performance CO2 reduction catalysts. Here, recent advances in high-throughput screening of electrocatalysts for CO2 reduction are reviewed. First, the mechanism of CO2 reduction reaction by electrocatalysis and potential catalyst candidates are introduced. Second, high-throughput computational methods developed to accelerate catalyst screening are presented, such as density functional theory and machine learning. Then, high-throughput experimental methods are outlined, including experimental design, high-throughput synthesis, in situ characterization and high-throughput testing. Finally, future directions of high-throughput screening of CO2 reduction electrocatalysts are outlooked. This review will be a valuable reference for future research on high-throughput screening of CO2 electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.