Abstract

Potassium-ion batteries (PIBs) are expected to develop into the next-generation large-scale energy storage technology because they inherit the advantages of both lithium-ion batteries and sodium-ion batteries, including high energy density, rich potassium reserves in the earth's crust, low cost, and excellent K-ion (K+) transport kinetics in the electrolyte. However, due to the large ion radius of K+, heavy mass of K element, and high activity of K metal, the commonly employed graphite anodes have suffered from apparent volume expansion during the K+ storage process, resulting in low coulomb efficiency, rapid capacity decay, and poor rate performance. Thus, developing suitable anode materials is one of the most effective ways to improve the K+ storage performance of PIBs. This review provides a summary of the current advances in the research of anode materials for PIBs based on several K+ storage mechanisms, namely intercalation/deintercalation, conversion, and alloying/dealloying mechanisms. The reported successful regulation techniques are also outlined, including the enhancement of electrolytes and binders, the boost of metal-containing material conductivity, the expansion of carbon material layer spacing, the construction of composite anodes, etc. Finally, PIBs' development efforts and application outlook are both highly promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.