Abstract

Three-dimensional (3-D) shape measuring techniques, using a combination of grating projection and a most frequently used mathematical tool--Fourier fringe analysis, have been deeply researched and increasing in numbers. Such kind techniques are based on the idea of projecting and superposing a carrier fringe pattern onto the surface of the tested object, and then reconstructing its corresponding 3-D shape from the deformed fringe pattern modulated by the height of the tested object and captured by a camera from other view direction. This paper mainly reviews the basic principles and its typical applications of the combined technology based on grating projection and Fourier fringe analysis that we have developed over past ten years in the research field of dynamic 3-D shape measurement. Meanwhile, the advantages and challenges of this technique and the current development of real-time measurement in this research filed are also described as a discussion and conclusion in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.