Abstract

Bioorthogonal reactions are rapid, specific and high yield reactions that can be performed in in vivo microenvironments or simulated microenvironments. At present, the main biorthogonal reactions include Staudinger ligation, copper-catalyzed azide alkyne cycloaddition, strain-promoted [3 + 2] reaction, tetrazine ligation, metal-catalyzed coupling reaction and photo-induced biorthogonal reactions. To date, many reviews have reported that bioorthogonal reactions have been used widely as a powerful tool in the field of life sciences, such as in target recognition, drug discovery, drug activation, omics research, visualization of life processes or exogenous bacterial infection processes, signal transduction pathway research, chemical reaction dynamics analysis, disease diagnosis and treatment. In contrast, to date, few studies have investigated the application of bioorthogonal reactions in the analysis of biomacromolecules in vivo. Therefore, the application of bioorthogonal reactions in the analysis of proteins, nucleic acids, metabolites, enzyme activities and other endogenous molecules, and the determination of disease-related targets is reviewed. In addition, this review discusses the future development opportunities and challenges of biorthogonal reactions. This review presents an overview of recent advances for application in biomolecular analysis and disease diagnosis, with a focus on proteins, metabolites and RNA detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.