Abstract

It has been shown that dietary oxidized fats influence thyroid function in rats and pigs. Mechanism underlying this phenomenon are unknown. This study was performed to investigate whether 13-hydroperoxy-9,11 -octadecadienic acid (13-HPODE), a primary oxidation product of linoleic acid, affects expression of gene involved in thyroid hormone synthesis and formation of hydrogen peroxide in primary porcine thyrocytes. Thyrocytes were treated with 13-HPODE in concentrations between 20 and 100 microM. Cells treated with vehicle alone ("control cells") or with equivalent concentrations of linoleic acid were considered as controls. Treatment of cells with 13-HPODE did not affect cell viability but increased the activities of the antioxidant enzymes superoxide dismutase and glutathione peroxidase (p < 0.05) compared to control cells or cells treated with linoleic acid. Relative mRNA concentrations of genes involved in thyroid hormone synthesis like sodium iodide symporter, thyrotropin receptor, and thyroid peroxidase, as well as iodide uptake, did not differ between cells treated with 13-HPODE and control cells or cells treated with linoleic acid. Treatment of cells with 13-HPODE, however, reduced the relative mRNA concentrations of dual oxidase-2 and the formation of hydrogen peroxide compared to control cells or cells treated with linoleic acid (p < 0.05). Because the production of hydrogen peroxide is rate-limiting for the synthesis of thyroid hormones, it is suggested that 13-HPODE could have an impact on the formation of thyroid hormones in the thyroid gland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call