Abstract

AbstractAchieving the high-precision control of cable-driven parallel robots (CDPRs) is complex because of their structural properties. In this paper, a quintessential redundant CDPR is designed as the research subject, and a continuous switching sliding mode controller based on workspace vision is implemented to enhance the accuracy and stability of trajectory tracking. In addition, a virtual prototype of the CDPR with uncertainties is created in the simulation analysis software ADAMS, and co-simulation is performed with the control system designed in Simulink to validate the effectiveness of the proposed control strategy. Furthermore, a CDPR platform is established for trajectory tracking experiments using the visual-based position feedback method. The trajectory tracking performance with the three control schemes is then evaluated. The experimental results show that the continuous switching sliding mode control algorithm can significantly decrease trajectory tracking errors and exhibit superior trajectory tracking performance compared to the other control strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.