Abstract

Wind power, as a type of renewable energy, has received widespread attention from domestic and foreign experts. Although it has the advantages of cleanliness and low pollution, its strong randomness and volatility can bring disadvantages to the stable operation of the power grid. Accurate power prediction can avoid the adverse effects of wind power, and is of great significance for power grid frequency regulation, peak shaving, and energy improvement. However, traditional wind power prediction methods can only achieve accurate predictions in the short term and perform poorly in medium- to long-term prediction tasks. To address this issue, a power prediction model based on a Gated Transformer is proposed in this paper. Firstly, it can extract features from different types of data sources, effectively capture their correlations, and achieve data fusion. Secondly, gating unit, dilated convolution unit, and multi-head attention mechanism are added to improve the Receptive field and generalization ability of the model. In addition, adding a decoder to guide data prediction further improves the accuracy of prediction. Finally, experiments are carried out with the data collected from typical wind farms. The results show that the proposed Gated Transformer achieves consistent state-of-the-art results in prediction tasks on different time scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call