Abstract

In this article, water and fertilizer irrigation system of tea plantation was developed to ensure stable yield, quality of tea, and appropriate irrigation and fertilization. Wireless sensor network node and gateway node are designed and deployed in the tea plantation for collecting soil moisture in real time. Each of the sensor nodes was composed of a STM32F103ZET6 microprocessor and a CC2420 transceiver module. Microcontroller S3C2410X is the kernel of hardware platform in the gateway nodes. All data were transmitted by wireless sensor network. The images of the tea leaves are collected by the high-speed camera loaded onto the unmanned aerial vehicle for analysis of the tea deficiency. The monitoring system is mainly used to display the humidity information about each node, the switch status of the water pump, the battery valve, and so on. It is convenient for user to manage the tea plantation. System configuration and parameter modification can be configured through the monitoring system. The dynamic time warping algorithm is used to judge the abnormal situation of the system. Diamond deployment is used in the network, and the networking experiments were conducted comparing with random deployment. Result showed that both time delay and congestion of network increased as the network scale varied from 5, 10, and 15 to 20 nodes. The topology stabilization time gets prolonged simultaneously. Packet loss rate decreased while data transmission interval varied from 10, 20, and 30 to 40 s. Packet loss rate values in diamond deployment are lower than those in random deployment. In order to improve the accuracy of tea deficiency detection, data fusion technology was adopted. A block-based histogram is employed and similarity distance is adopted to confirm the diagnosis of absence of one or more nutrients of tea. The image information and the spectral information are acquired. The principal component factor is extracted and input into the back propagation neural network to judge the quality of the tea. The number of principal component factors of image information and spectral information is set to six and three; the overall recognition rate reached 97.8%. Therefore, the level of the system abnormality can be determined by the dynamic time warping distance. Test results indicate that it is possible to accurately determine whether tea is deficient and accurately determine whether the system data acquisition is abnormal.

Highlights

  • The soil of tea gardens in the mountains and hills is thin, poor in water retention, and strong in permeability

  • Dynamic time warping (DTW) algorithm is utilized to judge the abnormal situation of the system and use Back propagation (BP) network to judge the status of tea leaves

  • In order to verify the performance of the network, three parameters are defined: topology formation time (TFT), topology stabilization time (TST), and topology reconstruction time (TRT).[27]

Read more

Summary

Introduction

The soil of tea gardens in the mountains and hills is thin, poor in water retention, and strong in permeability. Intelligent water and fertilizer irrigation system based on the Internet of Things (IOT) technology, Zigbee technology, and Android technology uses sensors to collect parameters such as temperature, humidity, conductivity, and PH value, which are sent to the server via WSN, and monitors the growth environment of crops in real time.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.