Abstract
Voltage sags resulting from symmetrical or asymmetrical faults pose a significant threat to power quality. In response to this challenge, a voltage sag loss assessment method based on a two-stage Taguchi quality perspective approach is proposed to address the quantitative analysis of voltage sag economic losses. Initially, using the Taguchi quality perspective method, single-index quality loss functions are separately established for voltage sag magnitude and fault duration. Subsequently, by introducing a comprehensive load tolerance curve, sensitivity parameters within the quality loss function are accurately calculated. This yields a deterministic model for voltage sag assessment. Building upon this, the relative impact of the two indices on voltage sag loss is evaluated using the quality loss function. Consequently, a comprehensive loss model under the influence of multiple indices is formed by integrating two single-index evaluation models. The simulation results indicate that this method can effectively assess the economic losses of voltage sags under the combined influence of multiple factors. Compared to the original economic loss assessment method, it improves quantitative accuracy by approximately 3.72%. Moreover, the method reduces the computational complexity of loss assessment through the consolidation of intervals with similar sensitivity parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.