Abstract

Void drift between subchannels in a rod bundle is a crucial phenomenon affecting the calculation accuracy of thermal-hydraulic parameters in SMRs. It holds significant importance in enhancing the precision of safety analysis for SMRs. Existing research on experiment and model of void drift between rod bundle subchannels is relatively rare, and the accuracy of model calculations requires improvement. In this study, experiments on gas-liquid two-phase non-equilibrium flow were conducted to measure the redistribution of two-phase flow induced by void drift in a 1 × 2 rod bundle. The experiment results indicated that in bubby flow regime with void fraction less than 0.3, the void diffusion coefficient showed little variation with changes in void fraction. However, in slug flow and annular flow regimes with void fraction exceeding 0.3, the void diffusion coefficient significantly increased with an increase in void fraction. Furthermore, a new void drift model was developed and validated based on a subchannel code. The overall predicted uncertainty for the outlet void fraction in the rod bundle benchmark was less than 13%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call