Abstract

With the rapid development of computer network technology, the advantages of virtual reality technology in the field of instant messaging are becoming more and more significant. Virtual reality technology plays an important role in communication networks, including enhanced resource utilization, device redundancy, immersion, interactivity, conceptualization, and holography. In this paper, we use the basic theory of Restricted Boltzmann Machine to establish a semisupervised spatio-temporal feature model through the animation capture data style recognition problem. The bottom layer can be pretrained with a large amount of unlabeled data to enhance the model's feature perception capability of animation data, and then train the high-level supervised model with the labeled data to finally obtain the model parameters that can be used for the recognition task. The layer-by-layer training method makes the model have good parallelism, that is, when the layer-by-layer training method makes the model well parallelized, that is, when the bottom features cannot effectively represent the animation features, such as overfitting or underfitting, only the bottom model needs to be retrained, while the top model parameters can be kept unchanged. Simulation experiments show that the design assistance time of this paper's scheme for animation is reduced by 10 minutes compared to baseline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.