Abstract

The specific task of vehicle re-identification is how to quickly and correctly match the same vehicle in different scenarios. In order to solve the problem of inter-class similarity and environmental interference in vehicle images in complex scenes, one fusion attention method is put forward based on the idea of obtaining the distinguishing features of details—the mechanism for the vehicle re-identification method. First, the vehicle image is preprocessed to restore the image’s attributes better. Then, the processed image is sent to ResNet50 to extract the features of the second and third layers, respectively. Then, the feature fusion is carried out through the two-layer attention mechanism for a network model. This model can better focus on local detail features, and global features are constructed and named SDLAU-Reid. In the training process, a data augmentation strategy of random erasure is adopted to improve the robustness. The experimental results show that the mAP and rank-k indicators of the model on VeRi-776 and the VehicleID are better than the results of the existing vehicle re-identification algorithms, which verifies the algorithm’s effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.