Abstract
For the variable speed variable displacement power unit (VSVDPU), achieving power matching between the permanent magnet synchronous motor (PMSM) and the variable displacement plunger pump (VDPP) is the key to reducing system energy consumption. The control method of adjusting the speed of the PMSM and the displacement of the VDPP is the mainstay of current research and application of the VSVDPU. However, the dynamic properties of the PMSM and VDPP have not been balanced, which affects the control effect of the VSVDPU. This paper proposes a control method of variable speed and variable displacement with low energy consumption and high dynamics. The main idea is based on the efficiency model and dynamic response model of the PMSM and VDPP, and the factors that affect the efficiency and dynamic characteristics of the VSVDPU are analyzed. Guided by the multi-objective optimization algorithm, the optimal combination of speed and displacement under specific working conditions is derived. Simulation and experiment results show that the proposed control method is feasible to improve the efficiency and dynamic characteristics of the VSVDPU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.