Abstract
Abstract Scientific and effective urban waterlogging risk prediction can help improve urban waterlogging disaster prevention capabilities. Combining the numerical simulation model with the data-driven model, the construction of the urban waterlogging risk predictive model can satisfy the prediction accuracy and improve the prediction timeliness. Thus, this paper established an urban waterlogging risk predictive model based on the coupling of the BP neural network and SWMM model, and set five input patterns, finally selected the accumulative precipitation process and precipitation characteristics as input to predict the regional waterlogging risks under different urban rainstorm scenarios. The results show that the overall performance of the pipe drainage system in the study area is lower, and it cannot resist the rainstorm with a higher return period. Moreover, the total waterlogging risk of the southern old city is higher than that of the northern new city in the study area. The calculation speed of the prediction model constructed in this paper is thousands of times higher than that of the numerical model, so the calculation speed is very fast, which meets the requirements of the forecast timeliness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.