Abstract
Aiming at the problem that the traditional rapidly exploring random tree (RRT) algorithm only considers the global path of unmanned vehicles in a static environment, which has the limitation of not being able to avoid unknown dynamic obstacles in real time, and that the traditional dynamic window approach (DWA) algorithm is prone to fall into a local optimum during local path planning, this paper proposes a path planning method for unmanned vehicles that integrates improved RRT and DWA algorithms. The RRT algorithm is improved by introducing strategies such as target-biased random sampling, adaptive step size, and adaptive radius node screening, which enhance the efficiency and safety of path planning. The global path key points generated by the improved RRT algorithm are used as the subtarget points of the DWA algorithm, and the DWA algorithm is optimized through the design of an adaptive evaluation function weighting method based on real-time obstacle distances to achieve more reasonable local path planning. Through simulation experiments, the fusion algorithm shows promising results in a variety of typical static and dynamic mixed driving scenarios, can effectively plan a path that meets the driving requirements of an unmanned vehicle, avoids unknown dynamic obstacles, and shows higher path optimization efficiency and driving stability in complex environments, which provides strong support for an unmanned vehicle’s path planning in complex environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.