Abstract
In view of the classification of corrosion defects of well controlled manifold pipelines, an ultrasonic defect recognition method based on the combination of support vector machine(SVM) and improved artificial fish swarm algorithm (IAFSA) is proposed. Firstly, perform wavelet packet decomposition on the ultrasonic defect signal waveform to obtain the characteristic vector of characterizes the defect type; Then establish the support vector machine defect classification model, and use the improved artificial fish swarm algorithm to optimize the support vector machine parameters. Finally, a software and hardware experimental platform for the classification of pipeline corrosion defects of the well control manifold is built to carry out software simulation and experimental analysis. The experimental results show that the recognition rate of the defect classification model based on improved artificial fish swarm optimization support vector machine parameters is 94.67% for ultrasonic defect signals at different depths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.