Abstract

The tensile and bending process of asymmetric L-shaped aluminum alloy profile is studied by the Abaqus software using the finite element numerical simulation method. The geometric parameters of the ultrasonic-assisted vibration multi-point die (UMPD) and the law of influence on the stress-strain and spring-back of the L-section profile after bending are studied. The results show that the UMPD can reduce the forming stress of the profile during plastic deformation, and the stress-strain distribution of the aluminum profile is more uniform. The changes in the ultrasonic vibration frequency and amplitude of the mold are beneficial to reduce the spring-back of aluminum profiles. The ultrasonic process parameters with a vibration frequency of 20 kHz and an amplitude of 0.02 mm have the best effect on suppressing spring-back, which is reduced by 20.6% compared to the case of no ultrasonic application. Finally, it is verified by experiments that the experimental results are basically consistent with the simulation results, and the changing trend of spring-back deformation is consistent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call