Abstract

Based on a large quantity of experimental work and study of the two-dimensional MHD (Magnetohydrodynamic) simulation describing the implosion dynamics of X-pinch, at the same time taking basic physical processes of implosion into account, this paper seeks to build a two-dimensional MHD simulation model on implosion dynamics throughout the whole constriction evolution (including formation of dense plasma, compression, generation of hot spot, X-ray pulsed radiation), determine the target area for numerical simulation, as well as the initial time for simulation and plasma initial state. As for two-dimensional MHD models which indicate the physical process during different stages, a clear boundary condition is explored along with Lagrange-Euler numerical method which strives to reproduce the dynamics of the X-pinch implosion and better study the physical properties during the X-pinch implosion dynamics. Results of this thesis will enrich the X-pinch research areas of basic theories and analytical methods, which is of great theoretical significance and application value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.