Abstract
Offshore pipelines are hailed as the “lifeline” of an offshore oil and gas production system and are essential for offshore oil and gas development. Component tracing technologies for the oil and gas multiphase transmission pipeline networks need to be urgently developed to predict the fluid composition changes in pipeline networks. Instead of assuming the fluid components are constant, we consider they varied with flow. The component conservation equations and a phase change model are established. The equation of state of the fluid is adopted to determine the equilibrium state of each component in real time. Considering the macroscopic flow calculation, microscopic fluid components, and phase equilibrium, the component tracking algorithm is established for natural gas condensate pipeline networks, which can dynamically track the fluid composition in pipeline networks and calculate the phase exchange amount and related flow parameters in real time. Three case studies are performed to verify the effectiveness of the algorithm. These findings are of great practical significance for understanding the gas–liquid two-phase flow in pipeline networks, promoting further engineering applications of component tracking on pipeline networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.