Abstract

In order to solve the problem of poor robustness of the traditional method of calculating torque in the mechanical model of 7-DOF picking manipulator, this paper proposes a control strategy of calculating torque plus fuzzy compensation by using adaptive fuzzy logic system to compensate the uncertain part of the mechanical model of 7-DOF picking manipulator. By using Lagrange method, the dynamic model of 7-DOF manipulator is established, and the relationship between joint motion and applied torque (force) is obtained. Using ADAMS and MATLAB to establish a co-simulation platform, the manipulator and trajectory tracking control system are simulated. The results show that the trajectory tracking error of each joint in the algorithm is obviously reduced and the convergence trend is obvious. The average trajectory tracking accuracy of joint 1 to joint 7 was improved by 70.22%, 94.78%, 0.62%, 74.23%, 89.78%, 86.45%, and 67.15%, respectively. In this control scheme, the control force (moment) of each joint changes regularly, and the output force (moment) does not appear chattering and mutation when the disturbance signal is added. The research results can provide support for the further study of picking manipulator trajectory tracking control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call