Abstract

Neural machine translation (NMT) is a data-driven machine translation approach that has proven its superiority in large corpora, but it still has much room for improvement when the corpus resources are not abundant. This work aims to improve the translation quality of Traditional Mongolian-Chinese (MN-CH). First, the baseline model is constructed based on the Transformer model, and then two different syntax-assisted learning units are added to the encoder and decoder. Finally, the encoder’s ability to learn Traditional Mongolian syntax is implicitly strengthened, and the knowledge of Chinese-dependent syntax is taken as prior knowledge to explicitly guide the decoder to learn Chinese syntax. The average BLEU values measured under two experimental conditions showed that the proposed improved model improved by 6.706 (45.141–38.435) and 5.409 (41.930–36.521) compared with the baseline model. The analysis of the experimental results also revealed that the proposed improved model was still deficient in learning Chinese syntax, and then the Primer-EZ method was introduced to ameliorate this problem, leading to faster convergence and better translation quality. The final improved model had an average BLEU value increase of 9.113 (45.634–36.521) compared with the baseline model at experimental conditions of N = 5 and epochs = 35. The experiments showed that both the proposed model architecture and prior knowledge could effectively lead to an increase in BLEU value, and the addition of syntactic-assisted learning units not only corrected the initial association but also alleviated the long-term dependence between words.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call