Abstract

Multi-wheel vehicles are extensively used in military, agricultural machinery, and construction machinery. Since multi-wheel vehicle is one type of over-actuated systems, it is required that the kinematics and dynamics of all wheels have to be coordinately controlled. Therefore, the coordinated wheel torque control is the key factor. In this paper, the torque optimization allocation strategy of multi-wheel skid steering vehicle with independent in-wheel motors has been studied based on its dynamic model. The dynamic rule based on wheel torque distribution method has been studied in this paper, as well as optimal torque allocation method based on control allocation. Weighting control allocation error and control energy as the optimization target, wheel torque control allocation problem can be solved mathematically using quadratic programming method. Integrating with wheel slip control and actuator fault redundancy control schemes, the optimization algorithm is correspondingly designed, which improved the dynamic performance and safety of steering vehicle. The effectiveness of wheel torque distribution strategy was validated using Matlab/Simulink software and the simulation platform of the multi-wheel vehicle, and the simulation results show that the wheel torque, when a wheel motor fails, can be redistributed among the effective motors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.