Abstract

In this paper, a biomimetic topology optimization design method that simulates the growth pattern of leaf veins is proposed for the design of the support structure of ultra-light airfoil-like solar cells in the solar powered unmanned aerial vehicle. This method simulates the optimal growth process of main vein morphology through the topology change of dynamic point groups to obtain an optimized topological main support structure and then generates a Voronoi grid structure in the area surrounded by the main support structure to increase the local support for the battery. The whole process is combined with genetic algorithm to simulate the optimal distribution strategy of leaf vein growth by inputting a small number of parameters. Compared with the traditional grid support structure, the support structure obtained by simulating the leaf vein growth optimization strategy can provide more efficient support for the solar panel and avoid damage to the solar cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call