Abstract
This paper is aimed at greenhouse tomato nitrogen detection using hyperspectral imaging combined with three dimensional laser scanning technology. This technology extracts the nitrogen hyperspectral feature image and the plant three dimensional morphological characters, to achieve the rapid quantitative analysis of nitrogen in tomato. The characteristic spectrum of nitrogen was extracted, and the mean intensity characteristic of the image feature was obtained. Then based on the acquisition of the tomato hyperspectral image data cube at different nitrogen levels, the sensitive region stepwise regression combined with correlation analysis was performed. Based on the acquired three dimensional laser scanning data of tomatoes, the stem diameter, the plant height and other biomass characteristics of different nitrogen levels were obtained by establishing the spatial geometric model of tomato three dimensional point cloud. A multi-feature fusion model for tomato nitrogen detection was established by partial least square regression. The results showed that the R2 in the constructed model was 0.94, with the accuracy significantly better than that of the single feature model established by using hyperspectral image and three dimensional laser scanning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.