Abstract

Skid-steered wheeled vehicles can be applied in military, agricultural, and other fields because of their flexible layout structure and strong passability. The research and application of vehicles are developing towards the direction of “intelligent” and “unmanned”. As essential parts of unmanned vehicles, the motion planning and control systems are increasingly demanding for model and road parameters. In this paper, an estimation method for tire and road parameters is proposed by combining offline and online identification. Firstly, a 3-DOF nonlinear dynamic model is established, and the interaction between tire and road is described by the Brush nonlinear tire model. Then, the horizontal and longitudinal stiffness of the tire is identified offline using the particle swarm optimization (PSO) algorithm with adaptive inertia weight. Referring to the Burckhardt adhesion coefficient formula, the extended forgetting factor recursive least-squares (EFRLS) method is applied to identify the road adhesion coefficient online. Finally, the validity of the proposed identification algorithm is verified by TruckSim simulation and real vehicle tests. Results show that the relative error of the proposed algorithm can be well controlled within 5%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call