Abstract

In wireless networks, MAC scheduling methods can be divided into two types according to the implementation model: centralized and distributed scheduling. By reasonably designing MAC scheduling policies, both centralized and distributed schedulers can ensure a reliable throughput capacity region, i.e., realizing throughput-guaranteed. However, it can be found that some existing throughput-guaranteed scheduling schemes cannot further ensure bounded end-to-end average delay, and the reason for this phenomenon has not been deeply analyzed. In practical communication networks, throughput and delay are equally important. Based on this idea, the existing MAC scheduling strategies are investigated systematically in this paper from two aspects of throughput and delay, and their performances are evaluated and compared through both theoretical analysis and simulation experiments. The work of this paper provides a theoretical basis for the improvement of MAC scheduling technology in the next-generation wireless networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.