Abstract
Aiming at the problem of precision driving and vibration suppression for sensitive payloads on-orbit, this paper proposes a new compliant platform based on an embedded superstructure and a smart material actuator. Firstly, the main structure of the platform is designed and optimized to achieve the expected indicators via the response surface method. Then, the vibration reduction mechanism of the platform with the embedded superstructure is studied by establishing an equivalent model. Following that, a four-phase superstructure is matched and designed with a compact space, and the results are verified by finite element modal analysis. Finally, both the tensioning performance and vibration reduction performance under fixed frequency harmonic disturbance are studied via transient dynamic simulation. Based on the obtained results, directions for future improvements are proposed. The relevant conclusions can provide a reference for function integration of precision tensioning and vibration suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.