Abstract

Near infrared reflectance (NIR) spectroscopy has been used to obtain NIR spectra of two varieties of apple samples. The dimensionality of NIR spectra was reduced by principal component analysis (PCA), and discriminant information was extracted by linear discriminant analysis (LDA). Last, a hybrid possibilistic clustering algorithm (HPCA) was utilized as classifier to discriminate the apple samples of different varieties. HPCA integrates possibilistic clustering algorithm (PCA) and improved possibilistic c-means (IPCM) clustering algorithm, and produces not only the membership values but also typicality values by simple computation of the sample co-variance. Experimental results showed that HPCA, as an unsupervised learning algorithm, could quickly and easily discriminate the apple varieties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.