Abstract

To build an environment-friendly society, clean transportation systems, and renewable energy sources play essential roles. It is critical to improve the lifetime mileage of electric vehicles' batteries for reducing the cycle life cost and carbon footprint in green transportation. In this paper, a long-life lithium-ion battery is achieved by using ultra-long carbon nanotubes (UCNTs) as a conductive agent with relatively low content (up to 0.2% wt.%) in the electrode. Ultra-long CNT could realize longer conductive path crossing active material bulks in the electrode. Meanwhile, the low content of UCNTs can help to minimize conductive agent content in electrodes and obtain higher energy density. The film resistance and electrochemical impedance spectroscopy (EIS) confirmed that the use of UCNTs could markedly enhance electronic conductivity in the battery. The battery's life and life mileage can be prolonged by almost half due to the superior electronic conductivity of UCNTs. The life cycle cost and carbon footprint are also significantly reduced, which could markedly increase economic and environmental performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call