Abstract

Aiming at the problems that the fuel releases a lot of cold energy and the refrigerated containers consume a lot of electricity on large LNG powered container ships, a set of cold energy cascade utilization scheme that mainly uses LNG cold energy for refrigerated containers is designed. The simulation software Aspen HYSYS is used to establish and simulate the process of the ship’s cold energy cascade utilization system under five different working conditions, and the main parameters of the key nodes are obtained, according to the established exergy efficiency model, the exergy efficiency of the main equipment and the whole system is solved. Under the five working conditions, the maximum exergy efficiency of the refrigerated container system before optimization is 24.54%, at this time, the exergy efficiency of the entire cold energy utilization system is 24.86%. With the goal of improving the exergy efficiency of the entire system, using a hierarchical optimization method, the key parameters affecting the exergy efficiency of each cold energy utilization module are analyzed and optimized respectively, and the optimal operating parameters of different cold energy utilization module were determined. So as to realize the optimization of the whole cold energy cascade utilization system. The results show that the exergy efficiency of the optimized LNG cold energy cascade utilization system for ships under five working conditions is improved, under the 65% working condition, the exergy efficiency of the optimized refrigerated container system is 27.69%, and the exergy efficiency of the whole cold energy utilization system is 28.04%, which are increased by 3.15% and 3.18% respectively. Which proves that the LNG cold energy cascade utilization system can realize the effective utilization of LNG cold energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.